metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.21D6, C22.4D12, D6⋊C4⋊7C2, C6.6(C2×D4), (C2×C4).9D6, (C2×C6).4D4, C22⋊C4⋊6S3, C4⋊Dic3⋊5C2, C2.8(C2×D12), C6.23(C4○D4), (C2×C6).27C23, (C2×C12).3C22, (C22×Dic3)⋊2C2, C3⋊2(C22.D4), C2.10(D4⋊2S3), (C22×S3).5C22, C22.45(C22×S3), (C22×C6).16C22, (C2×Dic3).28C22, (C3×C22⋊C4)⋊4C2, (C2×C3⋊D4).5C2, SmallGroup(96,93)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.21D6
G = < a,b,c,d | a2=b2=c12=1, d2=b, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=bc-1 >
Subgroups: 186 in 78 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C22.D4, C4⋊Dic3, D6⋊C4, C3×C22⋊C4, C22×Dic3, C2×C3⋊D4, C23.21D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C22.D4, C2×D12, D4⋊2S3, C23.21D6
Character table of C23.21D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 12 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 25)(2 44)(3 27)(4 46)(5 29)(6 48)(7 31)(8 38)(9 33)(10 40)(11 35)(12 42)(13 36)(14 43)(15 26)(16 45)(17 28)(18 47)(19 30)(20 37)(21 32)(22 39)(23 34)(24 41)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 13 14 12)(2 11 15 24)(3 23 16 10)(4 9 17 22)(5 21 18 8)(6 7 19 20)(25 36 43 42)(26 41 44 35)(27 34 45 40)(28 39 46 33)(29 32 47 38)(30 37 48 31)
G:=sub<Sym(48)| (1,25)(2,44)(3,27)(4,46)(5,29)(6,48)(7,31)(8,38)(9,33)(10,40)(11,35)(12,42)(13,36)(14,43)(15,26)(16,45)(17,28)(18,47)(19,30)(20,37)(21,32)(22,39)(23,34)(24,41), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13,14,12)(2,11,15,24)(3,23,16,10)(4,9,17,22)(5,21,18,8)(6,7,19,20)(25,36,43,42)(26,41,44,35)(27,34,45,40)(28,39,46,33)(29,32,47,38)(30,37,48,31)>;
G:=Group( (1,25)(2,44)(3,27)(4,46)(5,29)(6,48)(7,31)(8,38)(9,33)(10,40)(11,35)(12,42)(13,36)(14,43)(15,26)(16,45)(17,28)(18,47)(19,30)(20,37)(21,32)(22,39)(23,34)(24,41), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13,14,12)(2,11,15,24)(3,23,16,10)(4,9,17,22)(5,21,18,8)(6,7,19,20)(25,36,43,42)(26,41,44,35)(27,34,45,40)(28,39,46,33)(29,32,47,38)(30,37,48,31) );
G=PermutationGroup([[(1,25),(2,44),(3,27),(4,46),(5,29),(6,48),(7,31),(8,38),(9,33),(10,40),(11,35),(12,42),(13,36),(14,43),(15,26),(16,45),(17,28),(18,47),(19,30),(20,37),(21,32),(22,39),(23,34),(24,41)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,13,14,12),(2,11,15,24),(3,23,16,10),(4,9,17,22),(5,21,18,8),(6,7,19,20),(25,36,43,42),(26,41,44,35),(27,34,45,40),(28,39,46,33),(29,32,47,38),(30,37,48,31)]])
C23.21D6 is a maximal subgroup of
C23.5D12 C23⋊4D12 C24.42D6 C42⋊10D6 C42.92D6 C42.96D6 C42.102D6 D4⋊5D12 D4⋊6D12 C42.118D6 C24.67D6 C24⋊7D6 C24.44D6 C6.462+ 1+4 C6.1152+ 1+4 C6.472+ 1+4 C6.482+ 1+4 C4⋊C4.187D6 C6.532+ 1+4 C6.772- 1+4 C6.782- 1+4 C6.792- 1+4 S3×C22.D4 C6.822- 1+4 C6.1222+ 1+4 C6.662+ 1+4 C6.852- 1+4 C6.692+ 1+4 C42⋊22D6 C42.143D6 C42.144D6 C42.145D6 C42.161D6 C42.163D6 C42.164D6 C42.165D6 C22.4D36 D6.D12 D6.9D12 C62.57D4 C62.60D4 C62.69D4 D10.16D12 D10.17D12 C10.(C2×D12) (C2×C10).D12 C22.D60
C23.21D6 is a maximal quotient of
C2.(C4×D12) (C2×C4).17D12 (C22×C4).85D6 D6⋊C4⋊3C4 (C2×C4).21D12 (C2×C12).33D4 C23.39D12 C23.40D12 C23.15D12 C23.43D12 C22.D24 C23.18D12 C24.56D6 C24.58D6 C24.21D6 C24.60D6 C24.27D6 C22.4D36 D6.D12 D6.9D12 C62.57D4 C62.60D4 C62.69D4 D10.16D12 D10.17D12 C10.(C2×D12) (C2×C10).D12 C22.D60
Matrix representation of C23.21D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 | 8 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
9 | 3 | 0 | 0 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
9 | 3 | 0 | 0 | 0 | 0 |
8 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,5,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[9,3,0,0,0,0,3,4,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[9,8,0,0,0,0,3,4,0,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;
C23.21D6 in GAP, Magma, Sage, TeX
C_2^3._{21}D_6
% in TeX
G:=Group("C2^3.21D6");
// GroupNames label
G:=SmallGroup(96,93);
// by ID
G=gap.SmallGroup(96,93);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,218,188,122,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^12=1,d^2=b,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations
Export